
IR2m user’s manual
for version 0.1.0

Fritz Menzer
fritz.menzer@epfl.ch

31. 3. 2001

Contents

1 What is IR2m? 2
1.1 What is the IR2m program? . 2

2 Installation of the IR2m program 3
2.1 Requirements . 3
2.2 Download and installation . 3
2.3 Deinstallation . 3

3 User interface of the IR2m program 4
3.1 Overview . 4
3.2 Mapping function . 5

3.2.1 Editing the mapping function 5
3.2.2 Defining the displayed area 5

3.3 Path generation . 6
3.3.1 Path definition and frequency 6
3.3.2 Amplitude and Center . 6
3.3.3 Envelope . 7
3.3.4 Starting point . 7

3.4 Voices, MIDI channel and sound storage 8
3.5 MIDI connection . 8

4 IR2m sound programming techniques 8

A File formats 9
A.1 r2m.dtd . 9
A.2 Mapping function file example . 10
A.3 Sound file example . 10

1

mailto:fritz.menzer@epfl.ch

1 What is IR2m?

IR2m stands for IR2 mapping and is a sound synthesis method that allows to
produce a wide range of dynamic sounds.

The principle is easy to understand. We produce two independent signals
x(t) and y(t). Each signal has variable amplitude and offset. (x(t), y(t)) can
be seen as a path in IR2 (the two dimensional plane). To produce a sound we
use a mapping function f(x, y) that maps the path (x(t), y(t)) on the interval
[−1,+1] so that s(t) = f(x(t), y(t)) is a sound signal (which can be sent to a
loudspeaker for example).

A possible method to generate the x and y signals is described in following
formula:

x(t)
y(t)

=
=
Ax(t)cos(ωxt) + Cx(t)
Ay(t)sin(ωyt) + Cy(t)

(1)

In equation 1 Cx(t) and Cy(t) are offset (or center) control signals and Ax(t)
and Ay(t) are amplitude control signals.

The mapping function f can be any function

f : IR2 → IR
(x, y) 7→ f(x, y)

(2)

such that
∀(x, y) ∈ IR2, f(x, y) ∈ [−1,+1] (3)

An easy way to achieve this is to define

f(x, y) = min {max {g(x, y),−1} ,+1} (4)

where g(x, y) has no constraints on its values.

1.1 What is the IR2m program?

The IR2m program is a program that implements the IR2m synthesis method.
It runs on BeOS and is available as a beta1 version at http://www.xsmusic.ch
for free.

1The beta version of the IR2m program may only be used until the 1st of september 2001

2

http://www.be.com
http://www.xsmusic.ch

2 Installation of the IR2m program

2.1 Requirements

To be able to install the IR2m program on your computer you have to have
BeOS 5.0 or higher installed on your computer. Furthermore you need to have
the development tools installed, notably gcc, the GNU C Compiler which is
available at http://www.bebits.com. If you have the “Pro” edition of BeOS,
you don’t have to worry - gcc is already included.

As this is a very early version of the IR2m program it is absolutely not
optimized, so don’t be surprised if you get only about 10 voices2 out of a Pentium
III 700Mhz. But there is still a lot of potential to optimize the synthesis engine.

2.2 Download and installation

The first thing you have to do is download r2m.zip at http://www.xsmusic.ch.
Then you should expand the archive on your BeOS partition, for example in the
home directory /boot/home. This will create a new directory called R2m that
contains all the files necessary to run the IR2m program (except gcc).

When you start IR2m for the first time it will ask you to read the licens-
ing agreement. In order to use the program you have to accept the licensing
agreement.

2.3 Deinstallation

If for some reason you want to deinstall the IR2m program, the only thing you
need to do is to delete the R2m directory. That’s the ease of use of BeOS...
Just be sure to save the sounds and functions in the sounds and functions
directories if you want to keep them.

2The number of voices depends on the complexity of the sound, especially of the mapping
function and on the number of envelope points

3

http://www.bebits.com
http://www.xsmusic.ch

3 User interface of the IR2m program

3.1 Overview

The IR2m user interface is generally divided in two parts: To the left you can
define the mapping function and the way it is displayed while everything on the
right hand side of the function display is needed to define the path (x(t), y(t)).

4

3.2 Mapping function

The mapping function is displayed using a colormap. If a point is red, the
function takes the value −1 at this point. Blue stands for +1 and black for 0.
Intermediate colors (for example dark blue) stand for intermediate values.

3.2.1 Editing the mapping function

To change the mapping function, just type a new function in the text field
below the function display and press enter. It may take a few seconds until the
function is comiled.

To load and save the mapping function you can use the buttons labeled Load
f(x,y) and Save f(x,y).

3.2.2 Defining the displayed area

You can tell IR2m what area you want to have displayed by indicating the width
of the display (in the function’s coordinates) and by specifying which point of
the function should be linked to which point on the display. The point of the
function is specified in the function’s coordinates and the point on the display
in a coordinate system which has its origin in the bottom left corner and in
which the display’s width is 1.

For example link (0, 0) to (0, 1) would mean that you want to link the origin
of the function (0, 0) to the top left corner (0, 1) of the display.

This system has the advantage that you can link a point of interest of the
function to a certain point on the display and change only the displaywidth
parameter to zoom in and out.

5

3.3 Path generation

3.3.1 Path definition and frequency

This part of the user interface shows the formula used to calculate x(t) and
y(t) and lets you specify the frequencies of the sine wave oscillators. The f to
the right of the editable text fields stands for the base frequency of the sound,
so if you want to have both oscillators fixed to the base frequency, you just type
1 in both fields.

3.3.2 Amplitude and Center

The amplitude control signals are generated by envelopes (Env(t)). These
envelopes produce values between 0 and +1:

Env(t) ∈ [0,+1]

Each amplitude control signal is derived from the corresponding envelope ac-
cording to the following formula (where A(t) may stand for Ax(t) or Ay(t)):

A(t) = Env(t) (p1 + p2V el + p3Key + p4Ctl[p5](t)) (5)

In (5) V el and Key are values that are associated to each note played and
represent the key velocity and the key number. They are normalized to [0,+1],
so that MIDI velocity 0 corresponds to V el = 0, 127 to V el = 1, MIDI note 0
(C3) to Key = 0 and note 127 (g6) to Key = 1. Ctl[p5](t) is the MIDI controller
p5.

Each time a control change message whose controller number is equal to p5

is received Ctl[p5] changes its value. Because there are only 128 valid controller
numbers, p5 must be an integer in {0, 2, ..., 127}.

The parameters p1, ..., p4 are floating point numbers, i.e. approximations of
real numbers.

The center control signals are generated the same way as the amplitude control
signals, except for one big difference: Instead of defining the center control signal

6

directly, you define its time derivative, as to say the velocity of the center. The
real center control signals are calculated by integration:

C(t) =
∫ t

0

dC(t)
dt

dt+ C(0) (6)

This makes it possible - and very easy - to define for example a path where the
center moves with constant velocity on a straight line after the key was released.
Just set a single flat segment in the release part of each envelope associated with
the dCx(t)

dt and dCy(t)
dt signals (i.e. the speed in the x and y directions).

dC(t)
dt

= p1Env(t) + p2V el + p3Key + p4Ctl[p5](t) (7)

In (7) Env(t) is in [−1,+1] while the other parameters and signals are defined as
for equation (5). C(t) may stand for Cx(t) or Cy(t). Notice also the structural
difference between equations (5) and (7).

3.3.3 Envelope

IR2m’s envelopes are linear and can have an unlimited number of segments.
Be aware that a high number of segments means also a high CPU load, and
therefore less voices. This will hopefully be fixed in a future version.

At the bottom of each envelope there is a line indicating an imaginary “key-
pressed” signal. “High” means the key is pressed, “low” means it is not. This
divides the envelope in two parts: When the key is pressed, the envelelope gen-
erates the signal defined in the “high” part and when the key is released it starts
immediately with the “low” part.

To add a segment to the envelope, just left-click in the envelope and a new
cornerpoint is generated. To remove a cornerpoint, right-click on it. To move a
point, drag it with the left mouse button.

To get a better resolution in the envelope you can stretch the IR2m window
or edit the sound file directly (see appendix A).

3.3.4 Starting point

As you may have noticed in equation (6) there is a term C(0). That means that
for each center control signal C(t) in addition to the dC(t)

dt signal we also need
a value that defines C(t) for t = 0 (the instant when the key is pressed). If you
know the velocity of a point at any time, you need to know where the point was
at a certain instant to be able to say where the point is at any time.

7

So Cx(0) and Cy(0) define the starting point of the center control signal.
These two values may depend on the key number, the velocity and a controller
in a way similar to equations (5) and (7):

C(0) = p1 + p2V el + p3Key + p4Ctl[p5](0) (8)

where C(0) may stand for Cx(0) or Cy(0). The parameters p1, ..., p5 are defined
as in equation (7)

Remark: (Cx(0), Cy(0)) is not necessarily the starting point of the path, due
to equation (1). The starting point of the path is in fact

x(0)
y(0)

=
=
Ax(0) + Cx(0)

Cy(0)
(9)

3.4 Voices, MIDI channel and sound storage

You can define how many voices IR2m should produce simultaneously and from
which MIDI channel it should get the data. If the CPU power is not enough to
produce the desired number of voices, the synthesis engine will automatically
turn off voices3. The default value for the maximum number of voices and for
the MIDI channel is 1.

To load and save sounds you can use the buttons labeled Load Sound and
Save Sound.

3.5 MIDI connection

To connect IR2m’s MIDI input to some MIDI producer node (such as a MIDI
interface) you have to use the program PatchBay (at least for now) which is
released by Be Inc. under Be Sample Code License and comes with the IR2m
program.

4 IR2m sound programming techniques

Programming sounds with IR2m is a nearly unlimited topic (because there is an
infinity of possible mapping functions) that merits being treated in a seperate
document. Please refer to http://www.xsmusic.ch/articles/r2mspt.pdf.

3The synthesis engine starts to turn off voices as soon as the calculation of the voices takes
up more than 80% of the CPU time

8

http://www.xsmusic.ch/articles/r2mspt.pdf

A File formats

IR2m saves its mapping functions and sounds in XML format. This means that
with a simple text editor you can modify these files. This is especially useful
for sound files, because you can edit the envelopes at an arbitrary precision.

A.1 r2m.dtd

<!ELEMENT r2mfunction (info, expression, display)>
<!ELEMENT r2msound (info, r2mfunction, dcxdt, dcydt, ax,

ay, cx0, cy0, fx, fy)>

<!ELEMENT info (r2mversion, author)>
<!ELEMENT expression (#PCDATA)>
<!ELEMENT display (width, linkfunction, linkscreenrel)>

<!ELEMENT r2mversion (#PCDATA)>
<!ELEMENT author (#PCDATA)>

<!ELEMENT width (#PCDATA)>
<!ELEMENT linkfunction (x, y)>
<!ELEMENT linkscreenrel (x, y)>

<!ELEMENT x (#PCDATA)>
<!ELEMENT y (#PCDATA)>

<!ELEMENT dcxdt (env, vel, key, ctl, ctlnum, envdata)>
<!ELEMENT dcydt (env, vel, key, ctl, ctlnum, envdata)>
<!ELEMENT ax (env, vel, key, ctl, ctlnum, envdata)>
<!ELEMENT ay (env, vel, key, ctl, ctlnum, envdata)>
<!ELEMENT cx0 (one, vel, key, ctl, ctlnum)>
<!ELEMENT cy0 (one, vel, key, ctl, ctlnum)>
<!ELEMENT fx (#PCDATA)>
<!ELEMENT fy (#PCDATA)>

<!ELEMENT env (#PCDATA)>
<!ELEMENT one (#PCDATA)>
<!ELEMENT vel (#PCDATA)>
<!ELEMENT key (#PCDATA)>
<!ELEMENT ctl (#PCDATA)>
<!ELEMENT ctlnum (#PCDATA)>

<!ELEMENT envdata (envpoint+)>

<!ELEMENT envpoint EMPTY>

<!ATTLIST envpoint t CDATA #REQUIRED
val CDATA #REQUIRED
fku (true | false) #REQUIRED>

9

A.2 Mapping function file example

<?xml version="1.0"?>
<!DOCTYPE r2mfunction SYSTEM "http://www.xsmusic.ch/dtd/r2m.dtd">

<r2mfunction>
<info>
<r2mversion>0.1beta</r2mversion>
<author>Fritz Menzer</author>

</info>
<expression>(5*x*y+2.7)*(y-x)/((1+x*x+y*y)*(1+x*x+y*y))</expression>
<display>
<width>10</width>
<linkfunction>
<x>0</x>
<y>0</y>

</linkfunction>
<linkscreenrel>
<x>0.5</x>
<y>0.5</y>

</linkscreenrel>
</display>

</r2mfunction>

A.3 Sound file example

<?xml version="1.0"?>
<!DOCTYPE r2msound SYSTEM "http://www.xsmusic.ch/dtd/r2m.dtd">

<r2msound>
<info>
<r2mversion>0.1beta</r2mversion>
<author>Fritz Menzer</author>

</info>
<r2mfunction>
<info>
<r2mversion>0.1beta</r2mversion>
<author>Fritz Menzer</author>

</info>
<expression>sin(5*x*x*y/(x*x*x*x+y*y))</expression>
<display>
<width>10</width>
<linkfunction>

<x>0</x>
<y>0</y>

</linkfunction>
<linkscreenrel>

<x>0.5</x>
<y>0.5</y>

</linkscreenrel>

10

</display>
</r2mfunction>
<dcxdt>
<env>10</env>
<vel>0</vel>
<key>0</key>
<ctl>0</ctl>
<ctlnum>0</ctlnum>
<envdata>
<envpoint t="0.000000" val="0.925000" fku="false"/>
<envpoint t="0.256959" val="0.375000" fku="false"/>
<envpoint t="0.378302" val="0.050000" fku="true"/>

</envdata>
</dcxdt>
<dcydt>
<env>10</env>
<vel>0</vel>
<key>0</key>
<ctl>0</ctl>
<ctlnum>0</ctlnum>
<envdata>
<envpoint t="0.000000" val="-1.000000" fku="false"/>
<envpoint t="0.107066" val="0.125000" fku="false"/>
<envpoint t="0.342612" val="0.025000" fku="false"/>
<envpoint t="0.571021" val="-0.100000" fku="true"/>

</envdata>
</dcydt>
<ax>
<env>1</env>
<vel>0</vel>
<key>0</key>
<ctl>0</ctl>
<ctlnum>0</ctlnum>
<envdata>
<envpoint t="0.000000" val="0.000000" fku="false"/>
<envpoint t="0.021413" val="1.000000" fku="false"/>
<envpoint t="0.292649" val="0.000000" fku="true"/>

</envdata>
</ax>
<ay>
<env>1</env>
<vel>0</vel>
<key>0</key>
<ctl>0</ctl>
<ctlnum>0</ctlnum>
<envdata>
<envpoint t="0.000000" val="0.000000" fku="false"/>
<envpoint t="0.021413" val="1.000000" fku="false"/>
<envpoint t="0.292649" val="0.000000" fku="true"/>

</envdata>

11

</ay>
<cx0>
<one>0.8</one>
<vel>0</vel>
<key>0</key>
<ctl>0</ctl>
<ctlnum>0</ctlnum>

</cx0>
<cy0>
<one>-1</one>
<vel>1.5</vel>
<key>0</key>
<ctl>0</ctl>
<ctlnum>0</ctlnum>

</cy0>
<fx>1</fx>
<fy>1.005</fy>

</r2msound>

12

	What is I-R2m?
	What is the I-R2m program?

	Installation of the I-R2m program
	Requirements
	Download and installation
	Deinstallation

	User interface of the I-R2m program
	Overview
	Mapping function
	Editing the mapping function
	Defining the displayed area

	Path generation
	Path definition and frequency
	Amplitude and Center
	Envelope
	Starting point

	Voices, MIDI channel and sound storage
	MIDI connection

	I-R2m sound programming techniques
	File formats
	r2m.dtd
	Mapping function file example
	Sound file example

