
IR2m sound programming techniques
for version 0.1.0

Fritz Menzer
fritz.menzer@epfl.ch

20. 4. 2001

Contents

1 The basics 2
1.1 Amplitude . 2
1.2 Spectrum . 2

2 Advanced techniques 3
2.1 Imitating filters . 3
2.2 Variable transformations . 3

3 A remark on math.h 4

1

mailto:fritz.menzer@epfl.ch

1 The basics

The natural parameters of a sound are the spectrum and the amplitude, so in
this section will be examined how these parameters correspond to the parameters
of IR2m (f(x, y), Ax, Ay, Cx, Cy, fx, fy). In a classic subtractive synthesizer
(structure: oscillators→ filter→ amplificator) it is easy to say what determines
what: the oscillators and the filter (with the corresponding envelope) determine
the spectrum and how it changes in time while the amplificator (also with
envelope) determines the amplitude of the sound.

With IR2m this is more complicated as basically everything depends on all
parameters1. This may make it more difficult to program sounds, but it is
far more natural than classic subtractive synthesis. In a non-electronic music
instrument the spectrum and the amplitude always vary together (for example
if you hit a key on piano harder, the sound will not only get louder, but also
more agressive, with more overtones).

1.1 Amplitude

The amplitude depends on Ax and Ay: if Ax and Ay are very small, the am-
plitude of the output signal will also be very small (depending on f(x, y)). The
sound spt amplitude Ax Ay.xml shows how one can use this dependency to
make a fade-out in the release phase of the sound. Of course this can also be
used in the beginning of the sound.

The amplitude depends on Cx and Cy: if the path (x(t), y(t)) moves to
a region where f(x, y) is almost flat, the amplitude of the output signal will
become almost zero. This is illustrated in spt amplitude position.xml where
Cx and Cy increase rapidly in the release phase of the sound in order to move
the path to a region where f(x, y) is almost zero.

Of course if the mapping function was different, the effect of a certain path
could be completely different.

1.2 Spectrum

The spectrum depends on Ax and Ay: if Ax and Ay are very small, the spec-
trum of the output signal will be sine-like and if Ax and Ay become very big,
the spectrum becomes very rich (or agressive) (depending on the mapping func-
tion f(x, y)). The sound spt spectrum Ax Ay.xml shows how one can use this
dependency to make a sound whose spectrum becomes more and more agressive
while you keep a key pressed.

The spectrum depends on Cx and Cy: if the path (x(t), y(t)) moves in a
region where f(x, y) is changing very rapidly, the spectrum of the output signal
will be very rich. This is illustrated in spt spectrum position.xml where Cx
increases slowly in order to move the path from a region where f(x, y) changes
rapidly to one where it is more flat. This produces a sound with a spectrum
that starts out quite agressively and becomes more and more sine-like in the
end.

The spectrum also depends on the oscillators’ frequencies fx and fy. These
frequencies determine mainly the shape that the path (x(t), y(t)) has in one

1there is just one exception: the amplitude does not depend on the oscillators’ frequencies
fx and fy

2

period. For fx = 1 and fy = 1 (as in spt spectrum fx fy 0.xml) this shape is
a circle. For other values such that fx 6= fy the shape will be a Lissajous shape.
In general one can say that the higher the values for fx and fy are and the
stranger the ratio between them, the more strange becomes the sound. Have a
look for example on spt spectrum fx fy 2.xml where fx = 5 and fy = 6. If fx
and fy are not integers the shape will change from period to period. This can
be seen in spt spectrum fx fy 1.xml where fx = 1 and fy = 2.001.

The most important factor in IR2m sounds is of course the mapping func-
tion. Some ideas on how to create interesting mapping functions are illustrated
in the following section, but just to get an idea how the mapping function
changes the sound, you could look at the examples spt spectrum fxy 1.xml
and spt spectrum fxy 2.xml which have exactly the same path, but different
mapping functions.

2 Advanced techniques

2.1 Imitating filters

Filters have the property of changing the spectrum (or the shape) of a signal. In
synthesizers most oftenly lowpass filters are used to limit the highest overtones
of the output signal.

For this manual I came up with two ideas on how to simulate lowpass filters
with IR2m. The first is to create a mapping function that is changing very
rapidly in one region and very slowly in another. If you have a path that moves
from the first to the second region, the sound will change from rich to sine-
like, almost like a lowpass-filtered sound. A way to achieve such a mapping
function is to make it depend on 1

x . An example of this technique can be found
in spt freq1.xml where

f(x, y) = sin
(

20
x

)
In this case the mapping function is very “wild” around x = 0 and quite flat
for |x| � 0. The nice thing about this method is that the sound automatically
sounds a bit as if it was produced with a resonant lowpass filter.

The other idea is to create a function that permits to imitate a lowpass-
filtered sawtooth or square wave with no resonance. A possible function is

f(x, y) =
y

x
2 + |y|

as in spt nores1.xml. This function “jumps” from −1 to +1 when you move
on the y-axis upwards over the origin (0, 0). If you have a path that verifies
x > 0 and in the beginning passes very close to the origin in vertical direction,
the sound will be close to a sawtooth wave. If this path now moves away from
the origin to the right (dCxdt > 0) then the waveform will be “smoothed” as by
a lowpass filter.

2.2 Variable transformations

One way to create functions that depend on 1
x and are suitable for the first

method described in the previous section is to take a periodic function (such as

3

the functions named fm2d*.xml) and perform the variable transformation x =
c
x′ where c is a constant. In the examples spt vartrans0.xml and spt vartrans1.xml
I took the function

f(x, y) = sin (x+ y sin (2x))

and performed the variable transformation x = 10
x′ resulting in the function

f(x′, y) = sin
(

10
x′

+ y sin
(

20
x′

))

3 A remark on math.h

When you introduce the mapping function you actually introduce a C expression
as the mapping function is compiled using the file ./functions/addon.c. In
this expression you may use all the methods defined in math.h. In math.h
almost all methods are defined in a double and a float version. As the float
versions are supposed to be faster and most of the calculations in IR2m are made
in single precision (i.e. float) it would make sense to use the float versions,
which are marked with an f at the end. Use for example sinf() instead of
sin().

To take a variable to a certain power, it is better to multiply it several times
by itself. For example x2 becomes x*x.

4

	The basics
	Amplitude
	Spectrum

	Advanced techniques
	Imitating filters
	Variable transformations

	A remark on math.h

