
A time domain analysis method
for pseudo-periodic signals

Fritz Menzer
fritz.menzer@epfl.ch

18. 3. 2001

Note: Each picture produced with the method described in this doc-
ument is linked to the corresponding sound. To hear which sound
produces the above picture, just click on it.

1

mailto:fritz.menzer@epfl.ch
http://www.xsmusic.ch/articles/samples/a_noisea3.wav

Contents

1 Introduction 3

2 Surface generation 6
2.1 Discrete-time case . 6
2.2 Continuous-time case . 7

3 Base frequency determination 8

4 Examples 12

5 Applications 17
5.1 The effect of the resonance parameter of an analog filter 17
5.2 FM synthesis: The effect of the frequency modulation depth . . . 21
5.3 Compression algorithm comparison 24

A Interpolation algorithm 28

2

1 Introduction

There are many methods that analyse signals in time domain or frequency
domain (using the Fourier transform). So why come up with some new method
that works only with pseudo-periodic signals1 and that doesn’t give you any
precise information (e.g. the intensities of the different harmonics)?

Even though my main motivation to publish this method is the beauty of
the obtained pictures, there may be some practical usefulness in it. For ex-
ample it can be rather difficult to say whether a sound was produced by an
FM synthesizer or by a classical analog syntheziser. When analysed with the
method described here FM sounds as well as analog sounds show caracteristic
two-dimensional features.

This method is very similar to the method where a pseudo-periodic signal is
divided in its periods and all the periods are displayed in a time-period graph
(c.f. figure 1).

0 1 2 3 4 5 6
0

50

100

−1.5

−1

−0.5

0

0.5

1

1.5

Period

t

Figure 1: A time-period graph of the superposition of two detuned sine waves
(frequency ratio ca. 1:5)

The method described here is basically the same as the time-period graph
method, but in polar coordinates (where θ depends on the time and r depends
mainly on the period). So it is interesting to compare those two methods.

The traditional time-period graph method has two problems:

• In discrete-time signals the period length is in general not an integer. So
where should you cut?

1signals showing a period like periodic signals but differing slightly in their shape from one
period to the next

3

0 1 2 3 4 5 6
0

20

40

60

80

100

−1

−0.5

0

0.5

1

1.5

2

Period

t

Figure 2: Here a “feature” (the peak) is moving over the period boundary.

• Where should you cut anyways? Most often there is no “canonical” di-
vision between periods. “Features” like maxima don’t care about your
division into periods and may move over period boundaries, meaning that
they disappear on one side of your graph and appear on the other (c.f.
figure 2).

The method described here solves those two problems, but creates new ones:

• A period is not displayed the same way if it is at the beginning of the
signal as if it were at the end of the signal

• It is hard to do precise measurements in the graph obtained by using this
method.

4

0 1
2

3 4
5 6

0

20

40

60

80

100

−1

−0.5

0

0.5

1

1.5

2

Period

t

Figure 3: In order to get a better graph we have to move the period boundary.

5

2 Surface generation

2.1 Discrete-time case

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Figure 4: 200 points distributed according to eq. 1 with T = 20.3 and α′ = 1

Let s[n] be a pseudo-periodic signal which has a period of T ∈ IR samples.
Let’s assign to each sample s[n] a point (x[n], y[n]) ∈ IR2 using the following
formula

(x, y)[n] =
α′n

T

(
cos

2πn
T

, sin
2πn
T

)
(1)

What is happening is basically that the signal get’s “laid out” along a spiral in
IR2 (c.f. figures 4, 5).

If we consider (x[n],y[n],s[n]) being a series of points in IR3 we can define a
function f(x, y) as the surface obtained by interpolating between those points.
Of course f(x, y) will depend on the interpolation algorithm chosen. The algo-
rithm used to create the pictures in this article can be found in the appendix.

In the examples shown in this article the surface is displayed using a color
map. Red means −1, white means 0 and blue +1. All samples have been
normalized to [−1,+1]. In order not to introduce a DC component in the
samples, they are centered around zero. So it may happen that only −1 or +1
is reached.

6

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Figure 5: Same as figure 4 but with the spiral traced

2.2 Continuous-time case

There should be no problem to generalize the method shown in the previous
section to a continuous-time signal s(t). One method would be to sample s(t)
with a sampling interval ts and let ts → 0.

But writing an interpolation algorithm for continuous-time signals would be
even easier than for discrete-time signals since for each point only one interpo-
lation needs to be done instead of three like in the code in the appendix.

7

3 Base frequency determination

From here on the text will refer to the base frequency of a signal rather than the
period because in general one is more interested in the frequency, also because
the frequency of a discrete-time signal is independent of the sampling frequency
while the period (measured in samples) is not. Using the period T was just to
show the problems that occur when T is not an integer. Of course it is equivalent
to talk about the base frequency or the period, because one is determined by
the other. In the continuous-time case their relation is Tf = 1 where [T] = s
and [f] = Hz. In discrete-time T is measured in samples and Tf = fs where fs
is the sampling frequency.

This section shows how to determine the base frequency empirically and
what a certain pattern on the picture tells us about the base frequency of the
sound.

The following pictures are all based on the same signal, but use different
values of T to display it.

The example signal has a base frequency of 55Hz but we don’t know that in
advance so we use a trial-and-error method. Of course the base frequency could
also be determined by using FFT, but it is amusing to see what happens when
the frequency is not the correct value.

Figure 6: f = 440Hz; Completely off. Let’s try a very low value to start with.

8

http://www.xsmusic.ch/articles/samples/d_attack2a2.wav

Figure 7: f = 10Hz; Ok. We seem to be at a sub-harmonic of the base fre-
quency. Let’s try the double frequency.

Figure 8: f = 20Hz; We can still see a pattern, but it seems to “turn” counter-
clockwise. Let’s try a lower frequency (would be a higher frequency if it turned
clockwise).

9

http://www.xsmusic.ch/articles/samples/d_attack2a2.wav
http://www.xsmusic.ch/articles/samples/d_attack2a2.wav

Figure 9: f = 18Hz; Better, but now it turns clockwise, Let’s try a higher
frequency.

Figure 10: f = 18.4Hz; Quite good. But f should be a bit lower now.

10

http://www.xsmusic.ch/articles/samples/d_attack2a2.wav
http://www.xsmusic.ch/articles/samples/d_attack2a2.wav

Figure 11: f = 18.33Hz; Great. But we see the same pattern repeated three
times. This means that our frequency is three times lower than the sound’s. So
we use 55Hz

Figure 12: f = 55Hz; Finally we’re there!

11

http://www.xsmusic.ch/articles/samples/d_attack2a2.wav
http://www.xsmusic.ch/articles/samples/d_attack2a2.wav

4 Examples

Figure 13: An analog synth brass sound (from Crumar Bit01)

12

http://www.xsmusic.ch/articles/samples/a_brass1a3.wav

Figure 14: An FM bell sound (from Yamaha TX81Z). With a bit of phantasy
you can see a bell in this picture. Thank you, Simona Cereghetti, for giving me
this hint!

Figure 15: A bass sound produced with IR2m

13

http://www.xsmusic.ch/articles/samples/d_bellla3.wav
http://www.xsmusic.ch/articles/samples/r2m_bass1.wav

Figure 16: A guitar sound (steel string)

Figure 17: A piano sound at 435Hz

14

http://www.xsmusic.ch/articles/samples/guitarsteelnr1_2e3.wav
http://www.xsmusic.ch/articles/samples/pianoa4.wav

Figure 18: A sound from the same piano, one octave lower than in figure 17

Figure 19: A sound from the same piano, two octaves lower than in figure 17

15

http://www.xsmusic.ch/articles/samples/pianoa3.wav
http://www.xsmusic.ch/articles/samples/pianoa2.wav

Figure 20: A sound from the same piano, three octaves lower than in figure 17

16

http://www.xsmusic.ch/articles/samples/pianoa1.wav

5 Applications

5.1 The effect of the resonance parameter of an analog
filter

The following pictures show a sound produced with a Crumar Bit01 synthesizer.
From picture to picture the resonance parameter has been increased by 10 in
the units of the synthesizer (no resonance = 0, max. resonance = 63).

The sound is based on a single sawtooth oscillator which is filtered by the
synthesizer’s 24dB/octave lowpass filter whose cutoff frequency decreases during
the evolution of the sound.

Figure 21: Res. = 0; The base frequency could be better adapted, but in order
to have the same frequency in all pictures of this sound it is adapted to the base
frequency of the sound at higher resonance levels.

17

http://www.synthmuseum.com/crumar/crubit01.html
http://www.xsmusic.ch/articles/samples/a_filterq0a3.wav

Figure 22: Res. = 10; The filter starts to produce a small maximum (the blue
streak that points down) which gets more and more delayed while the cutoff
frequency decreases.

Figure 23: Res. = 20; The maximum has become a series of maxima and minima
(the red and blue streaks that point to the right and the top).

18

http://www.xsmusic.ch/articles/samples/a_filterq10a3.wav
http://www.xsmusic.ch/articles/samples/a_filterq20a3.wav

Figure 24: Res. = 30; The main maximum and minimum of the sawtooth wave-
form become hard to distinguish from the “ripples” created by the oscillation
of the filter.

Figure 25: Res. = 40; It is nice to see how the filter emphasizes the harmonics
of the sawtooth waveform. The outermost “ring” shows the filter oscillating at
three times the sawtooth’s base frequency (fcutoff = 3fsawtooth).

19

http://www.xsmusic.ch/articles/samples/a_filterq30a3.wav
http://www.xsmusic.ch/articles/samples/a_filterq40a3.wav

Figure 26: Res. = 50; The filter is self-oscillating. Therefore the signal is not
pseudo-periodic anymore and it doesn’t make much sense to use this method to
display it.

20

http://www.xsmusic.ch/articles/samples/a_filterq50a3.wav

5.2 FM synthesis: The effect of the frequency modulation
depth

The pictures in this section show a bass sound produced with a Yamaha TX81Z
FM synthesizer. From picture to picture the modulation depth of one of the
oscillators is increased. The pattern in the last picture is quite typical for FM
synthesis. At least I’ve never seen a pattern like this in a sound from an analog
synthesizer.

Figure 27: A very boring bass sound

21

http://www.audiogrill.com/Instruments/Yamaha/TX81Z.html
http://www.xsmusic.ch/articles/samples/d_bass1ha3.wav

Figure 28: A bit of FM

Figure 29: More FM

22

http://www.xsmusic.ch/articles/samples/d_bass1ja3.wav
http://www.xsmusic.ch/articles/samples/d_bass1ka3.wav

Figure 30: A lot of FM

23

http://www.xsmusic.ch/articles/samples/d_bass1la3.wav

5.3 Compression algorithm comparison

In this section we look at the attack phase of the sound shown in figure 30 and
consider the different artifacts produced by MSADPCM and MP3 compression
algorithms at different compression settings.

Figure 31: No compression

24

http://www.xsmusic.ch/articles/samples/d_bass1la3_raw.wav

Figure 32: MS ADPCM compression. Some noise (white streaks) visible in the
top left corner.

Figure 33: MP3, BladeEnc, 128 kbps. The encoder added some silence (white
dot in the middle) in the beginning of the sample which causes the whole picture
to be turned.

25

http://www.xsmusic.ch/articles/samples/d_bass1la3.wav
http://www.xsmusic.ch/articles/samples/d_bass1la3_bladeenc.mp3

Figure 34: MP3, encoder from Fraunhofer Gesellschaft, 128 kbps. This encoder
adds even more silence (white dot even bigger). Almost no artifacts visible.

Figure 35: MP3, encoder from Fraunhofer Gesellschaft, 64 kbps.

26

http://www.xsmusic.ch/articles/samples/d_bass1la3_fhg.mp3
http://www.xsmusic.ch/articles/samples/d_bass1la3_fhg_64kbps.mp3

Figure 36: MP3, encoder from Fraunhofer Gesellschaft, 32 kbps.

27

http://www.xsmusic.ch/articles/samples/d_bass1la3_fhg_32kbps.mp3

A Interpolation algorithm

#include <math.h>

float *sample;
int32 samplelength=0;
float T; // samples per period = fs/f

// x = alpha * beta * n * cos(beta*n)
// y = alpha * beta * n * sin(beta*n)
// beta = 2*pi/T

float alphap; // alpha’=2*pi*alpha = ’step’ of spiral

float f(float x, float y)
{
if (samplelength>0)
{
int32 nb,nc;
float thetap=atan2f(-y,-x)/ZWOPI+0.5; // theta(x,y) <=> atan2f(y,x)
float m=sqrtf(x*x+y*y)/alphap-thetap;
float ipm=floorf(m);
float fpm=m-ipm;
float nk=(ipm+thetap)*T;
float nl=nk+T;
float ipnk=floorf(nk);
float ipnl=floorf(nl);
float fpnk=nk-ipnk;
float fpnl=nl-ipnl;
nb=(int32)ipnk;
nc=(int32)ipnl;

int32 nd=nc+1;
if (nd<0)
nd=0;

else if (nd>=samplelength)
nd=samplelength-1;

if (nc<0)
nc=0;

else if (nc>=samplelength)
nc=samplelength-1;

int32 na=nb+1;
if (na<0)
na=0;

else if (na>=samplelength)
na=samplelength-1;

if (nb<0)
nb=0;

else if (nb>=samplelength)
nb=samplelength-1;

28

return ((1-fpnk) * sample[nb] + fpnk * sample[na]) * (1-fpm)
+ (fpnl * sample[nd] + (1-fpnl) * sample[nc]) * (fpm);

}
else return 0;

}

29

	Introduction
	Surface generation
	Discrete-time case
	Continuous-time case

	Base frequency determination
	Examples
	Applications
	The effect of the resonance parameter of an analog filter
	FM synthesis: The effect of the frequency modulation depth
	Compression algorithm comparison

	Interpolation algorithm

