Time-Frequency Analysis for Audio Workshop Matching the Analysis Scheme to the Signal

Fritz Menzer (fritz.menzer@epfl.ch) Communication Systems, 5th year Ecole Polytechnique Fédérale de Lausanne

15th April, 2004

Overview

1	Introduction	3
2	Perfect Reconstruction - who cares?	4
	2.1 Definition of perfect reconstruction	4
	2.2 Do we need perfect reconstruction?	5
3	Harmonic Band Wavelet Transform	7
	3.1 Coefficient modeling	10
	3.2 Advantages / Drawbacks	11
4	From HBWT to inharmonic sound modeling	12
	4.1 Taking filters from different PR filterbanks	13
	4.2 Why aliasing is not a problem	14
	4.3 Method Overview	17
	4.4 Sounds	18
5	Time-Frequency Analysis and Granular Synthesis	19
	5.1 Time-domain effects	25
	5.2 Scale of all grains in a 1024-band full-tree wavelet decomposition	26
A	References	27

1 Introduction

• If you know what you're looking at, you can examine it more precisely.

- 2 Perfect Reconstruction who cares?
- 2.1 Definition of perfect reconstruction
 - Definition: Perfect Reconstruction (PR) method: method providing direct and inverse transforms \mathcal{T} and \mathcal{T}^{-1} such that for any signal s,

$$\mathcal{T}^{-1}(\mathcal{T}(s)) = s$$

- FFT based methods, Cosine Modulated Filterbanks and Wavelet transforms are usually PR methods.
- Simple operations like filtering or distortion do not necessarily allow PR (i.e. it may be impossible to find T⁻¹).
 Example: Quantisation obviously does not allow to reconstuct the original signal perfectly.

2.2 Do we need perfect reconstruction?

Noise Noise, down- and upsampled by 4

Do we need perfect reconstruction?

- Not needed for:
 - Modifying a signal
 - Handling noise
 - If the nature of the signal is known
- Why use PR methods for compression?
 - Generality (ideally any signal can be treated)
 - Localising the source of errors!

3 Harmonic Band Wavelet Transform

(Polotti and Evangelista, 2000)

- 3.1 Coefficient modeling
 - Wavelet Transform
 - Model the scale residual sinusoidally
 - Model the wavelet coefficients using LPC

3.2 Advantages / Drawbacks

+ Meaningful adaptation of frequency and time resolution

 \implies Visually better resolution

- + Reasonable model for the coefficients
- Works only for monophonic, harmonic sounds
- No model for the transients

4 From HBWT to inharmonic sound modeling

4.1 Taking filters from different PR filterbanks

4.2 Why aliasing is not a problem

If a sinusoid of the form

$$\sin\left(\frac{\hat{k}\pi}{P}t + \varphi\right)$$

is the input to a P-channel cosine modulated filterbank, only two bands will output nonzero coefficients:

 \implies there is no aliasing of the sinusoidal part, but only of the part that we model as noise!

4.3 Method Overview

Analysis

analyse signal \rightarrow find N partials \rightarrow determine filterbank \downarrow calculate 2N sets of filterbank coefficients + residual \downarrow calculate wavelet transform (WT) of filterbank coefficients \downarrow model the WT coefficients sinusoidally and with LPC

Synthesis

$$\begin{array}{c} \text{reconstruct WT coefficients} \\ \downarrow \\ \text{perform inverse wavelet transform} \rightarrow \text{get filterbank coefficients} \\ \downarrow \\ \text{inverse filterbank} \\ \downarrow \\ \text{add residual (or not)} \end{array}$$

4.4 Sounds

- Original Gong
- Reconstructed from the Filterbank Coefficients
- Synthesized from model parameters
- 1 octave pitch-shifted Gong
- Time-stretched Gong
- Sinusoidal-only Gong
- First wavelet scale only
- Harmonic Gong

5 Time-Frequency Analysis and Granular Synthesis

- Any Time-Frequency Transform implements a sort of Granular Synthesis.
- Each coefficient corresponds to a grain
- Grains are played at precise instants (instead of randomly)
- To produce a grain, set all coefficients to zero, except one that will be set to one. Then perform the inverse transform.

Cosine Modulated Filterbank grain

HBWT grain (noise part)

5.1 Time-domain effects

5.2 Scale of all grains in a 1024-band full-tree wavelet decomposition

A References

- Article on Harmonic Band Wavelet Transform by Polotti and Evangelista http://lcavwww.epfl.ch/publications/publications/2000/PolottiE00b.pdf
- DAFx 2002 paper on adaptation to inharmonic sounds http://lcavwww.epfl.ch/publications/publications/2002/PolottiE02.pdf
- Some material (presentation slides, Matlab functions and pure data objects) http://www.xsmusic.ch/